"史丹青"编著的书籍

生成对抗网络入门指南

内容简介

生成对抗网络毫无疑问是2018年最热门的人工智能技术之一,被美国《麻省理工科技评论》评选为2018年“全球十大突破性技术”。《生成对抗网络入门指南》是一本结合基础理论与工程实践的入门型书籍,深入浅出地讲解了生成对抗网络的各类模型以及技术发展。本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。通过本书的学习,能够了解生成对抗网络的技术原理,并通过书中的代码实例深入技术细节。本书共分10个章节,其中前半部分分别介绍了目前研究领域已经较为成熟的生成对抗网络模型,比如DCGAN、WGAN等等,以及大量不同结构的生成对抗网络变种。本书后半部分介绍了生成对抗网络在文本到图像的生成、图像到图像的生成以及其它应用中的研究与发展。希望本书能够帮助广大读者跟上人工智能技术的潮流,成为AI时代的先行者。

生成对抗网络(GAN)毫无疑问是当下热门的人工智能技术之一,被美国《麻省理工科技评论》评为2018年“全球十大突破性技术”。从2014年至今,与GAN有关的论文数量急速上升,网络上有人整理了近年来的GAN模型,截至2018年2月已经有超过350个不同形态的变种,并且数量仍然在持续增加中。除了科学研究本身的魅力以外,诸如文本到图像的生成、图像到图像的生成等应用研究也让业界非常兴奋,为人工智能领域带来了诸多可能性。

本书是一本结合基础理论与工程实践的入门书籍,深入浅出地讲解了GAN的技术发展以及各种衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能爱好者,书中包含GAN的理论知识与代码实践。通过本书的学习,读者能够理解GAN的技术原理与实现细节。

本书主要内容

•人工智能入门知识与开发工具

•GAN的理论与实践

•DCGAN、WGAN、cGAN等主流GAN衍生模型

•文本到图像的生成与图像到图像的生成

•多媒体与艺术设计领域中的GAN应用

•本书中实例代码和图片,可到华章官网www.hzbook.com搜索并下载

生成对抗网络入门指南(第2版)

适读人群:

本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。

1、本书第2版跟踪近两年生成对抗网络(GAN)技术的发展和变化,包括离散数据生成、GAN与强化学习的关联、海量级高质量图像生成技术等内容,新增了BigGAN、StyleGAN等图像生成模型的介绍与技术解析。这些内容更新与第1版内容有机地结合,深入浅出地阐述了生成对抗网络技术原理和演进,通过代码实例揭示了生成对抗网络技术实际应用的方法,方便读者学习入门。

2、书中所有示例代码基于Tensorflow2.0进行了更新,全部支持在Tensorflow2.0环境下运行,方便读者上手实践,深入了解技术实现细节。

3、读者可在华章图书网站该书网页下载书中全部示例代码。

从2014年至今,与GAN有关的论文数量急剧增加,从谷歌学术的数据来看,数量仍在不断增加中。究其原因,除了科学研究本身的魅力之外,诸如文本到图像的生成、图像到图像的生成等应用研究也让业界非常兴奋,给人工智能领域带来诸多可能性。

本书是GAN的入门书籍,结合基础理论、工程实践进行讲解,深入浅出地介绍GAN的技术发展以及各类衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能技术爱好者。书中包含GAN的理论知识与代码实践(示例代码可以从华章官网搜索下载),可帮助读者理解GAN的技术原理与实现细节。

本书主要内容

人工智能入门知识与开发工具

GAN的理论与实践

DCGAN、WGAN、cGAN等主流GAN衍生模型

文本到图像、图像到图像以及离散数据的生成方法

GAN与强化学习的关联

BigGAN、StyleGAN等前沿GAN模型

多媒体与艺术设计领域中的GAN应用

Github | Docker | Project