这是一本将数据分析技术与数据使用场景深度结合的著作,从实战角度讲解了如何利用Python进行数据分析和数据化运营。
畅销书全新、大幅升级,第1版近乎100%的好评,第2版不仅将Python升级到了新的版本,而且对具体内容进行了大幅度的补充和优化。作者是有10余年数据分析与数据化运营的资深大数据专家,书中对50余个数据工作流知识点、14个数据分析与挖掘主题、4个数据化运营主题、8个综合性案例进行了全面的讲解,能让数据化运营结合数据使用场景360°落地。
全书一共9章,分为两个部分:
第一部分(第1-4章) Python数据分析与挖掘
首先介绍了Python和数据化运营的基本知识,然后详细讲解了Python数据获取(结构化和非结构化)、预处理、分析和挖掘的关键技术和经验,包含10大类预处理经验、14个数据分析与挖掘主题,50余个知识点。
第二部分(第5~9章) Python数据化运营
这是本书的核心,详细讲解了会员运营、商品运营、流量运营和内容运营4大主题,以及提升数据化运营价值的方法。每个运营主题中都包含了基本知识、评估指标、应用场景、数据分析模型、数据分析小技巧、数据分析大实话以及2个综合性的应用案例。
这是一部从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结,更重要的是对会员、商品、流量、内容4个主题的数据化运营进行了系统讲解。
作者是国内一线数据分析师和大数据专家,在数据分析和数据化运营领域有近10年的经验,在业内颇具知名度和影响力。本书不仅得到了宋星、黄成明、宫鑫等14位资深专家的好评和推荐,还得到了天善智能、中国统计网等多个数据科学相关机构的支持和高度认可。
全书的内容在逻辑上共分为两大部分:
第一部分(第1~4章):Python数据分析与挖掘
着重讲解了Python和数据化运营的基本知识,以及Python数据获取(结构化和非结构化)、预处理、分析和挖掘的关键技术和经验。包含11条数据预处理经验、39个数据预处理知识点、14个数据分析和挖掘的建模主题。
第二部分(第5~9章):Python数据化运营
这是本书的核心,详细讲解了会员运营、商品运营、流量运营和内容运营4大主题,以及提升数据化运营价值的方法。在每个运营主题中都包含了基本知识、评估指标、应用场景、数据分析模型、数据分析小技巧、数据分析大实话以及2个综合性的应用案例。
本书提供案例数据和源代码(中文注释)下载,供读者实操时使用。
《Python大数据架构全栈开发与应用》介绍了如何使用Python实现企业级的大数据全栈式开发、设计和编程工作,涉及的知识点包括数据架构整体设计、数据源和数据采集、数据同步、消息队列、关系数据库、NoSQL数据库、批处理、流处理、图计算、人工智能、数据产品开发。
《Python大数据架构全栈开发与应用》既深入浅出地介绍了不同技术组件的基本原理,又通过详细对比介绍了如何根据不同场景选择最佳实践技术方案,并通过代码实操帮助读者快速掌握常用技术的应用过程,最后通过项目案例介绍了如何将所学知识应用于实际业务场景中。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
这是一本将数据分析技术与数据使用场景深度结合的著作,从实战角度讲解了如何利用Python进行数据分析和数据化运营。
畅销书全新、大幅升级,第1版近乎100%的好评,第2版不仅将Python升级到了新的版本,而且对具体内容进行了大幅度的补充和优化。作者是有10余年数据分析与数据化运营的资深大数据专家,书中对50余个数据工作流知识点、14个数据分析与挖掘主题、4个数据化运营主题、8个综合性案例进行了全面的讲解,能让数据化运营结合数据使用场景360°落地。
全书一共9章,分为两个部分:
第一部分(第1-4章) Python数据分析与挖掘
首先介绍了Python和数据化运营的基本知识,然后详细讲解了Python数据获取(结构化和非结构化)、预处理、分析和挖掘的关键技术和经验,包含10大类预处理经验、14个数据分析与挖掘主题,50余个知识点。
第二部分(第5~9章) Python数据化运营
这是本书的核心,详细讲解了会员运营、商品运营、流量运营和内容运营4大主题,以及提升数据化运营价值的方法。每个运营主题中都包含了基本知识、评估指标、应用场景、数据分析模型、数据分析小技巧、数据分析大实话以及2个综合性的应用案例。