"博文视点AI系列"丛书包含的书籍

快乐机器学习

学习并精通任何一门学科无外乎要经过四个步骤:它是什么?它可行吗?怎么学它?如何学好它?机器学习也不例外,本书就以这四个步骤来介绍机器学习。

本书第1章介绍“机器学习是什么”,即从定义开始,详细介绍机器学习涉及的知识、数据和性能度量。

第2章介绍“机器学习可行吗”,即介绍机器具备学习样本以外的数据的能力。

第3章介绍“机器学习怎么学”,即介绍机器如何选择出最优模型。作者在这 3 章的写作上花费的时间最多,光这 3 章的内容就绝对会让读者有所收获。

第 4~14 章介绍“如何学好机器学习”,重点介绍机器学习的各类算法和调参技巧。

第 15 章介绍机器学习中的一些非常实用的经验,包括学习策略、目标设定、误差分析和偏差与方差分析。

作者写作本书的目的是深入浅出介绍机器学习,使看似复杂、晦涩的专业知识变得通俗易懂,让那些想入门的读者感觉门槛没有那么高,让有基础的读者感觉内容也很丰富。为了达到这两个目的,本书用有趣的引言故事来激起读者的阅读兴趣,用清晰的思维导图来明晰结构,用自画图表来增强美感,用公式推导来讲透原理,达到趣、美、准、全,让每位读者从本书中获益,快乐地学习机器学习。

本书非常适合机器学习初学者、高校相关专业学生及有一定数学和统计学基础的高中生学习。

程序员的AI书:从代码开始

随着AI技术的普及,如何快速理解、掌握并应用AI技术,成为绝大多数程序员亟需解决的问题。本书基于Keras框架并以代码实现为核心,详细解答程序员学习AI算法时的常见问题,对机器学习、深度神经网络等概念在实际项目中的应用建立清晰的逻辑体系。

《程序员的AI书:从代码开始》分为上下两篇,上篇(第1~4章)可帮助读者理解并独立开发较简单的机器学习应用,下篇(第5~9章)则聚焦于AI技术的三大热点领域:推荐系统、自然语言处理(NLP)及图像处理。其中,第1章通过具体实例对Keras的机器学习实现进行快速介绍并给出整体概念;第2章从简单的神经元开始,以实际问题和代码实现为引导,逐步过渡到多层神经网络的具体实现上,从代码层面讲解神经网络的工作模式;第3章讲解Keras的核心概念和使用方法,帮助读者快速入门Keras;第4章讲解机器学习中的常见概念、定义及算法;第5章介绍推荐系统的常见方案,包括协同过滤的不同实现及Wide&Deep模型等;第6章讲解循环神经网络(RNN)的原理及Seq2Seq、Attention等技术在自然语言处理中的应用;第7~8章针对图像处理的分类及目标识别进行深度讨论,从代码层面分析Faster RCNN及YOLO v3这两种典型识别算法;第9章针对AI模型的工程部署问题,引入TensorFlow Serving并进行介绍。

《程序员的AI书:从代码开始》主要面向希望学习AI开发或者转型算法的程序员,也可以作为Keras教材,帮助读者学习Keras在不同领域的具体应用。

深入理解计算机视觉:在边缘端构建高效的目标检测应用

《深入理解计算机视觉:在边缘端构建高效的目标检测应用》按实战项目研发的先后顺序,介绍了目标检测神经网络从研发到运营的全生命周期。首先介绍了目标检测场景下的图片标注方法和数据格式,以及与之密切相关的特征融合网络和预测网络;介绍了数据“后处理”所涉及的 NMS 算法及其变种,在此基础上,读者只需结合各式各样的骨干网络就可以搭建完整的一阶段目标检测神经网络模型。接下来介绍了神经网络的动态模式和静态模式两种训练方法,以及训练过程中的数据监控和异常处理。最后以亚马逊云和谷歌 Coral 开发板为例,介绍了神经网络的云端部署和边缘端部署。其中,对于边缘端部署,本书还详细介绍了神经网络量化模型的基础原理和模型编译逻辑,这对将神经网络转化为可独立交付的产品至关重要。

《深入理解计算机视觉:在边缘端构建高效的目标检测应用》还结合智慧交通、智慧后勤、自动驾驶等项目,介绍了计算机视觉数据增强技术和神经网络性能评估原理,以及边缘计算网关、边缘计算系统、自动驾驶数据的计算原理和 PointNet++等多个三维目标检测神经网络,帮助读者快速将计算机视觉技术运用到实际生产中。

《深入理解计算机视觉:在边缘端构建高效的目标检测应用》实用性非常强,既适合对计算机视觉具有一定了解的高等院校本科生、研究生及具有转型意愿的软件工程师入门学习,又适合计算机视觉工程项目研发和运营人员参考阅读。对深度学习关键算法和骨干网络设计等基础知识感兴趣的读者还可以阅读本书作者编写的《深入理解计算机视觉:关键算法解析和深度神经网络设计》一书。

Github | Docker | Project