本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。
第一部分介绍基本的思路,包括神经网络底层的数学知识,第二部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第三部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在 Raspberry Pi 上工作。
畅销书《Python神经网络编程》作者最新力作;
全彩印刷,配套示例代码,图文并茂,易懂实用;
从零开始,用PyTorch构建自己的生成对抗网络。
生成对抗网络(Generative Adversarial Network,GAN)是神经网络领域的一颗新星,被誉为“机器 学习领域近 20 年来最酷的想法”。
本书以直白、简短的方式向读者介绍了生成对抗网络,指导读者如何使用PyTorch 按部就班地编写生成对抗网络。
全书共3章和5个附录,分别介绍了PyTorch基础知识,用PyTorch开发神经网络,改良神经网络以提升效果,引入CUDA和GPU以加速GAN训练,以及生成高质量图像的卷积GAN、条件式GAN等话题。附录部分介绍了在很多机器学习相关教程中被忽略的主题,包括计算平衡GAN的理想损失值、概率分布和采样,以及卷积如何工作,还简单解释了为什么梯度下降不适用于对抗式机器学习。
本书适合想初步了解GAN以及其工作原理的读者,也适合想要学习如何构建GAN的机器学习从业人员。对于正在学习机器学习相关课程的学生,本书可以帮助读者快速入门,为后续的学习打好基础。
1.PyTorch核心开发者教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。
2.详细讲解整个深度学习管道的关键实践,包括 PyTorch张量API、用 Python 加载数据、监控训练以及对结果进行可视化。
3. PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:
a.全面掌握PyTorch 相关的API 的使用方法以及系统掌握深度学习的理论和方法;
b.快速从零开始构建一个真实示例:肿瘤图像分类器;
c.轻松学会使用PyTorch 实现各种神经网络模型来解决具体的深度学习问题;
d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。
4. PyTorch 联合创作者Soumith Chintala作序推荐!
5. 书中所有代码都是基于Python 3.6及以上的版本编写的,提供源代码下载。
虽然很多深度学习工具都使用Python,但PyTorch 库是真正具备Python 风格的。对于任何了解NumPy 和scikit-learn 等工具的人来说,上手PyTorch 轻而易举。PyTorch 在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。
本书是教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括 PyTorch张量 API、用 Python 加载数据、监控训练以及将结果进行可视化展示。
本书主要内容:
(1)训练深层神经网络;
(2)实现模块和损失函数;
(3)使用 PyTorch Hub 预先训练的模型;
(4)探索在 Jupyter Notebooks 中编写示例代码。
本书适用于对深度学习感兴趣的 Python 程序员。了解深度学习的基础知识对阅读本书有一定的帮助,但读者无须具有使用 PyTorch 或其他深度学习框架的经验。
Datawhale的开源大模型实战教程,透彻解读4类常见NLP任务的系统设计,3种方式书-课-代码仓库全方位学习,每个人都可以用大语言模型轻松做出自己的AI产品, 5位人工智能领域学者吴飞、周明、朱信忠、金耀辉、张俊林亲笔推荐!
◎编辑推荐:
适读人群 :适合所有对大语言模型感兴趣的开发者阅读
1. Di一本基于大语言模型进行商业应用开发的书;
2. 以任务(相似匹配、句词分类、文本生成、复杂推理)为中心,内容不仅可用于ChatGPT,也适用于其他大语言模型;
3. 侧重于任务的讲解与设计,思路可用于任何项目;
4. 有详细的示例代码,大部分的代码稍作修改后可用于生产环境,还有Datawhale的HuggingLLM开源教程、B站视频课程,书-课-代码仓库全方位助力学习与实践;
5. Datawhale开源社区又一力作,五位人工智能领域学者吴飞、周明、朱信忠、金耀辉、张俊林亲笔推荐!
◎内容简介:
随着ChatGPT 的出现,大语言模型的能力得到了业内外的认可,新的商业模式不断涌现,旧的设计和实现都将重构。本书主要介绍基于ChatGPT 开发算法相关的应用或服务,侧重于介绍与自然语言处理相关的常见任务和应用,以及如何使用类似ChatGPT 的大语言模型服务来实现以前只有算法工程师才能完成的工作。
全书共8 章内容,第1 章介绍与ChatGPT 相关的基础知识,第2~5 章分别介绍相似匹配、句词分类、文本生成和复杂推理方面的任务,第6~8 章分别介绍ChatGPT 的工程实践、局限与不足,以及商业应用,以帮助读者更好地构建自己的应用。
本书以实践为主,尤其注重任务的讲解和设计,但同时也对自然语言处理相关算法的基本原理和基础知识进行科普性介绍,适合所有对大语言模型感兴趣的开发者阅读。
◎专业书评:
生成式人工智能所训练的大语言模型在内容合成等任务上取得了令人吃惊的进步,可产生新颖甚至是意料之外的结果——这与早期仅仅只会生硬地产生可预测结果的人工智能模型有很大不同,为探索通用人工智能的实现提供了一种方式,引起了各行业的广泛关注。因此我们所处的这个时期被誉为“人工智能的iPhone 时刻”。
这本书是由Datawhale 所推出的力作,秉承了Datawhale“为了学习者”的一贯理念,基于志愿者团队精彩的开源学习内容精心编纂而成,深入浅出地介绍大语言模型的原理和工程实践,对于初学者了解ChatGPT 非常有帮助!
——吴飞,浙江大学人工智能研究所所长
以ChatGPT 为代表的大语言模型技术推动了人工智能的发展,但如何应用大语言模型技术为用户赋能,产生更大的实用价值,仍然有很多现实问题需要去面对和解决。这本书是Datawhale 开源团队结合优质学习内容推出的又一力作,它帮助读者理解大语言模型背后的系统设计,进而能够利用大语言模型来研发自己的AI 产品。书中内容围绕自然语言处理任务展开,很多设计思路和细节其实可以应用到多个领域。期望读者多学多练,能够在实践中提升自我。
——周明,澜舟科技创始人兼CEO,创新工场首席科学家
这本书介绍了如何在大语言模型时代开发自然语言处理算法任务,让普通工程师借助大语言模型也能很快完成自然语言处理任务,在一定程度上降低了人工智能开发的门槛,让更多人有机会参与到人工智能行业的发展中。值得一提的是,这本书虽然以ChatGPT 作为示例,但绝大部分内容都可以无缝切换为其他大语言模型。这得益于本书基于以“自然语言处理算法任务”为核心的设计理念,因而这本书具有更长的生命周期。另外,书中提供的实践经验对自然语言处理算法工程师也具有实践指导意义。
——朱信忠,浙江师范大学人工智能研究院副院长,浙江省特级专家,Datawhale 首席科学家
随着ChatGPT 相关技术的快速发展,越来越多的人关心如何利用大语言模型的强大能力来解决具体问题。这是一本有关大语言模型应用和服务的实践指导书,详细介绍了如何开发基于大语言模型算法的应用和服务。这本书注重实际任务的设计及实现的思路讲解,并提供了对自然语言处理基础知识和算法原理的科普性介绍。相信无论是对大语言模型感兴趣的开发者还是算法工程师,都能从这本书中获益。
——张俊林,新浪微博新技术研发负责人
ChatGPT 已经成为公众关注的焦点,人工智能再次备受瞩目。虽然市面上已经有许多关于如何利用ChatGPT 提高工作效率的图书,但对于深入探讨ChatGPT 本质及其底层的大模型技术的作品却不多见。这本书以明晰而简洁的文字,阐述了大语言模型的工作原理,堪称杰作。更为可贵的是,书中还详细介绍了ChatGPT 的工程实施策略。对于那些渴望深入理解ChatGPT 和大模型技术的读者,我强烈推荐阅读这本书。
——金耀辉,上海交通大学人工智能研究院总工程师、教授
本书结合作者多年学习和从事自然语言处理相关工作的经验,力图用生动形象的方式深入浅出地介绍自然语言处理的理论、方法和技术。本书抛弃掉繁琐的证明,提取出算法的核心,帮助读者尽快地掌握自然语言处理所必备的知识和技能。本书主要分两大部分。第一部分是理论篇,包含前3章内容,主要介绍一些基础的数学知识、优化理论知识和一些机器学习的相关知识。第二部分是应用篇,包含第4章到第8章,分别针对计算性能、文本处理的术语、相似度计算、搜索引擎、推荐系统、自然语言处理和对话系统等主题展开介绍和讨论。本书适合从事自然语言处理相关研究和工作的读者参考,尤其适合想要了解和掌握机器学习或者自然语言处理技术的读者阅读。
作为一款轻量级、模块化的开源深度学习框架, Keras 以容易上子、利于快速原型实现、能够与TensorFlow 和Theano 等后端计算平台很好兼容等优点, 深受众多开发人 员和研究人员的喜爱。
本书结合大量实例,简明扼要地介绍了目前热门的神经网络技术和深度学习技术 。从经典的多层感知机到用于图像处理的深度卷积网络,从处理序列化数据的循环网络到伪造仿真数据的生成对抗网络,从词嵌入到AI 游戏应用中的强化学习,引领读者一层一层揭开深度学习的面纱, 并在逐渐清晰的理论框架下, 提供多个Python编码实例,方便读者动手实践。
通过阅读本书, 读者不仅能学会使用Keras 快捷构建各个类型的深度网络,还可以按需自定义网络层和后端功能, 从而提升自己的AI 编程能力,在成为深度学习专家的路上更进一步。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。
第一部分介绍基本的思路,包括神经网络底层的数学知识,第二部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第三部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在 Raspberry Pi 上工作。