本书是克莱因的一部力作。自1953年在美国出版后,多次再版,深受西方文化界、数学界欢迎,其影响经久不衰。
本书的目的是为了阐明这样一个观点: 在西方文明中,数学一直是一种主要的文化力量。
本书将主要考察数学思想如何影响了直到20世纪的人类生活和思想。全书将按照历史的顺序对数学思想进行考察,因此本书涉及的内容将从古巴比伦、古埃及开始,一直到现代的相对论。有人可能会对有关早期历史的材料提出疑问。然而,现代文化是许多早期文明的积累和综合。首先意识到数学理性力量的希腊人,他们虔敬地认为诸神在设计宇宙时利用了数学,并且极力敦促人类去揭示这种设计的图式。希腊人不仅在他们的文明中给予数学以重要的位置,而且首先创造了对人类文化有深刻影响的数学思想的榜样。当那些后续文明将古希腊人的成果传递到现代时,它们又不断赋予数学以更有意义的新功能。现在,数学的这些功能和影响已深深地嵌入我们的文化。即使是现代数学的成就,也可以根据先前业已存在的数学知识而给予*恰当的评价。
《什么是数学》既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界著名的数学科普读物。书中搜集了许多经典的数学珍品,给出了数学世界的一组有趣的、深入浅出的图画,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。
I·斯图尔特增写了新的一章,以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
本书以一个数学家的睿智,探讨了自古希腊以来,尤其是自伽利略以来数学在现代自然科学发展演化中的作用。
首章利用现代心理学生理学的错觉实验说明了感官知觉之不可靠。其实古希腊人早已领悟了这一点,因而求助于数学来研究自然现象成了古希腊的传统,这也是古希腊天文学兴起的原因(第2、3章)。无论是托勒密的地心说还是哥白尼和开普勒的日心说,追求数学上的简单性和完美成了探求自然知识的动力(第4章)。笛卡儿为科学建立了基于数学的严密方法论,而现代科学之父伽利略,其科学研究纲领的前提则是: 自然之书是用数学这门语言撰写的(第5章)。本身就是一位伟大的数学家的牛顿,其科学巨著就冠以《自然哲学的数学原理》(第6章)。麦克斯韦方程组能够揭示人的感官所不能及的电磁世界,则充分显示了数学的穿透力(第7章)。二十世纪的两项重大科学发现——相对论和量子论——,其基本物理思想和数学工具之间有着奇妙的对应(第8~10章)。这就引发了这样的问题,数学知识本身又从何而来?数学与物理实在的关系是什么(第11、12章)?
书中没有铺陈数学知识,数学只是像一位垂帘听政的皇后一样若隐若现。因此,想了解古今自然观或科学方法论的人文社会科学研究学习者可以从中受到启发,而自然科学研习者读此书则可以引发对于其专业领域的反思。而这正是作者所孜孜以求的: 在自然科学和人文社会科学之间搭起一座桥梁。
《证明与反驳:数学发现的逻辑》是匈牙利裔英国籍著名哲学家伊姆雷·拉卡托斯于20世纪60年代完成的一部探索数学史上新的发现产生过程的经典著作。书的主要内容包括作者用5年时间收集的两个典型的数学案例,以及《证明与反驳:数学发现的逻辑》的编者添加的拉卡托斯1961年在剑桥大学所撰博士论文的部分内容。拉卡托斯是以对话体的形式进行写作的,他虚构了教师在课堂上与学生们讨论正多面体欧拉公式V-E+F=2的猜想与发现、证明和反驳的全过程,形象地展现了数学史上对此问题进行研究探索的真实的历史图景,以此来挑战和批判以希尔伯特为代表的认为数学等同于形式公理的抽象、把数学哲学与数学史割裂开来的形式主义数学史观。此篇光辉论著的主要目的是要解决数学方法论的基本问题,以一种探索和发现的情境逻辑来代替形式主义和逻辑实证主义的抽象教条。正如拉卡托斯所说,非形式、准经验的数学的发展,并不只靠逐步增加的毋庸置疑的定理的数目,而是靠以思辨与批评、证明与反驳之逻辑对最初猜想的持续不断的改进。
让我们洞见数学和历史,品味其中的狡智、欺瞒和遁辞。这本《数学恩仇录:数学家的十大论战》向我们展示了在数学中,巨大的争端是如何推动数学的伟大进步。伟大的数学头脑思考问题的方式不止一种,数学中的争端为这个说法提供了无可:争辩的证据。受贪婪、嫉妒、野心和自私的驱使,这些争端有着肥皂剧一般的情节,使兄弟反目、父子成仇、学生和导师势同水火。16世纪,为了争得三次方程和四次方程解法的首先发现权,卡尔达诺和塔尔塔利亚大战一场;当塔尔塔利亚利用卡尔达诺的儿子作告密者,将卡尔达诺交给了西班牙宗教裁判所,他们之间的阴谋和对抗才宣告结束。接下来的几个世纪,在解析几何和光学的问题上,笛卡儿和费马争论不休;在微积分的首创权上.牛顿和莱布尼兹之间产生了激烈的争端;在微积分问题上,伯努利兄弟针锋相对;在数学的逻辑基础问题上.庞加莱和罗素战斗不休。在20世纪一场令人瞩目的数学冲突中,希尔伯特和布劳威尔卷了进来,爱因斯坦采取了中立的立场,形容他们之间的论战是青蛙和老鼠的战争。
在这本引人入胜的揭示数学家之间争端的书中,哈尔·赫尔曼既探讨了数学,又探讨了时代的精神。从提出或反驳这些有争议观点的信件,文章和书籍中,从对这些数学家的贡献作出过评价的历史学家的著作中,他酝酿出了这本书。在今天的数学中,很多激起这些争端的观点都很引人注目。例如,希尔伯特的证明理论是一个强有力的数学工具,在计算机科学中尤其如此。罗素的逻辑主义在现在不乏支持者。康托尔的集合论成为现代拓扑学和分形学的基础,它所导致的进步,为无穷小量微积分打下了坚实的基础。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
本书是克莱因的一部力作。自1953年在美国出版后,多次再版,深受西方文化界、数学界欢迎,其影响经久不衰。
本书的目的是为了阐明这样一个观点: 在西方文明中,数学一直是一种主要的文化力量。
本书将主要考察数学思想如何影响了直到20世纪的人类生活和思想。全书将按照历史的顺序对数学思想进行考察,因此本书涉及的内容将从古巴比伦、古埃及开始,一直到现代的相对论。有人可能会对有关早期历史的材料提出疑问。然而,现代文化是许多早期文明的积累和综合。首先意识到数学理性力量的希腊人,他们虔敬地认为诸神在设计宇宙时利用了数学,并且极力敦促人类去揭示这种设计的图式。希腊人不仅在他们的文明中给予数学以重要的位置,而且首先创造了对人类文化有深刻影响的数学思想的榜样。当那些后续文明将古希腊人的成果传递到现代时,它们又不断赋予数学以更有意义的新功能。现在,数学的这些功能和影响已深深地嵌入我们的文化。即使是现代数学的成就,也可以根据先前业已存在的数学知识而给予*恰当的评价。