"O'Reilly动物系列(中译本)"丛书包含的书籍

利用Python进行数据分析 (O'Reilly精品图书系列)

【名人推荐】

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”

——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

•将IPython这个交互式Shell作为你的首要开发环境。

•学习NumPy(Numerical Python)的基础和高级知识。

•从pandas库的数据分析工具开始。

•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。

•利用matplotlib创建散点图以及静态或交互式的可视化结果。

•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。

•处理各种各样的时间序列数据。

•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

利用Python进行数据分析

【名人推荐】

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”

——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

•将IPython这个交互式Shell作为你的首要开发环境。

•学习NumPy(Numerical Python)的基础和高级知识。

•从pandas库的数据分析工具开始。

•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。

•利用matplotlib创建散点图以及静态或交互式的可视化结果。

•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。

•处理各种各样的时间序列数据。

•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

利用Python进行数据分析

【名人推荐】

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”

——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

•将IPython这个交互式Shell作为你的首要开发环境。

•学习NumPy(Numerical Python)的基础和高级知识。

•从pandas库的数据分析工具开始。

•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。

•利用matplotlib创建散点图以及静态或交互式的可视化结果。

•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。

•处理各种各样的时间序列数据。

•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

利用Python进行数据分析(原书第2版)

【名人推荐】

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”

——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

•将IPython这个交互式Shell作为你的首要开发环境。

•学习NumPy(Numerical Python)的基础和高级知识。

•从pandas库的数据分析工具开始。

•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。

•利用matplotlib创建散点图以及静态或交互式的可视化结果。

•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。

•处理各种各样的时间序列数据。

•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

机器学习:实用案例解析 (O'Reilly精品图书系列)

机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。

全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种用于数据分析的高水平、功能性脚本语言。

本书主要内容如下:

 开发一个朴素贝叶斯分类器,仅仅根据邮件的文本信息来判断这封邮件是否是垃圾邮件;

 使用线性回归来预测互联网排名前1000网站的PV;

 利用文本回归理解图书中词与词之间的关系;

 通过尝试破译一个简单的密码来学习优化技术;

 利用无监督学习构建股票市场指数,用于衡量整体市场行情的好坏;

 根据美国参议院的投票情况,从统计学的角度对美国参议员聚类;

 通过K近邻算法构建向用户推荐R语言包;

 利用Twitter数据来构建一个“你可能感兴趣的人”的推荐系统;

 模型比较:给你的问题找到最佳算法。

Github | Docker | Project