本书作为算法领域经典的参考书,全面介绍了关于算法和数据结构的必备知识,并特别针对排序、搜索、图处理和字符串处理进行了论述。第4版具体给出了每位程序员应知应会的50个算法,提供了实际代码,而且这些 Java 代码实现采用了模块化的编程风格,读者可以方便地加以改造。配套网站 algs4.cs.princeton.edu 提供了本书内容摘要以及相关代码、测试数据、编程练习、教学课件等资源。
本书是一本专门为程序员而写的数学书,介绍了程序设计中常用的数学知识。本书门槛不高,不需要读者精通很多高深的数学知识,只需要读者具备基本的四则运算、乘方等数学基础知识和日常生活中的基本逻辑判断能力即可。本书拒绝枯燥乏味的讲解,而是代之以轻松活泼的风格。书中列举了大量读者都很熟悉,而且非常有趣的数学实例,并结合程序设计的思维和算法加以剖析,可以训练读者的数学思维能力和程序设计能力,进而拓宽读者的视野,增强职场竞争力。 本书共11章,分别介绍了数据的表示、神奇的素数、递归、排列组合、用余数进行数据分组、概率、复利、数理逻辑、推理、几何图形构造、统筹规划等程序设计中常用的数学知识,从而引导读者深入理解编程中的数学方法和思路。本书包含的实例有结绳记事、孪生素数、梅森素数、哥德巴赫猜想、阶乘、汉诺塔、斐波那契数列、乘法原理、加法原理、字符编码、密码长度、日历中的数学、心灵感应魔术、约瑟夫环、智叟分牛、百枚钱币鼓士气、庄家的胜率、中奖概率、用概率方法求π值、复利的威力、对折纸张、舍罕王的赏赐、三段论、选言推理、假言推理、关系推理、花盆摆放、残缺棋盘、丢失的线条、田忌赛马、背包问题等。 本书适合广大程序设计人员及数学爱好者阅读,尤其适合有一定程序设计经验,但还需要进一步加深对程序设计理解的人员阅读。本书对IT求职人员、信息学竞赛和大学生程序设计竞赛等参赛学员也有很好的参考价值。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》按实战项目研发的先后顺序,介绍了目标检测神经网络从研发到运营的全生命周期。首先介绍了目标检测场景下的图片标注方法和数据格式,以及与之密切相关的特征融合网络和预测网络;介绍了数据“后处理”所涉及的 NMS 算法及其变种,在此基础上,读者只需结合各式各样的骨干网络就可以搭建完整的一阶段目标检测神经网络模型。接下来介绍了神经网络的动态模式和静态模式两种训练方法,以及训练过程中的数据监控和异常处理。最后以亚马逊云和谷歌 Coral 开发板为例,介绍了神经网络的云端部署和边缘端部署。其中,对于边缘端部署,本书还详细介绍了神经网络量化模型的基础原理和模型编译逻辑,这对将神经网络转化为可独立交付的产品至关重要。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》还结合智慧交通、智慧后勤、自动驾驶等项目,介绍了计算机视觉数据增强技术和神经网络性能评估原理,以及边缘计算网关、边缘计算系统、自动驾驶数据的计算原理和 PointNet++等多个三维目标检测神经网络,帮助读者快速将计算机视觉技术运用到实际生产中。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》实用性非常强,既适合对计算机视觉具有一定了解的高等院校本科生、研究生及具有转型意愿的软件工程师入门学习,又适合计算机视觉工程项目研发和运营人员参考阅读。对深度学习关键算法和骨干网络设计等基础知识感兴趣的读者还可以阅读本书作者编写的《深入理解计算机视觉:关键算法解析和深度神经网络设计》一书。
暂无详细内容介绍,四海清单
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
本书作为算法领域经典的参考书,全面介绍了关于算法和数据结构的必备知识,并特别针对排序、搜索、图处理和字符串处理进行了论述。第4版具体给出了每位程序员应知应会的50个算法,提供了实际代码,而且这些 Java 代码实现采用了模块化的编程风格,读者可以方便地加以改造。配套网站 algs4.cs.princeton.edu 提供了本书内容摘要以及相关代码、测试数据、编程练习、教学课件等资源。