深度卷积网络(DCNN)是目前十分流行的深度神经网络架构,它的构造清晰直观,效果引人入胜,在图像、视频、语音、语言领域都有广泛应用。
本书以AI领域新的技术研究和和实践为基础,从技术理论、工作原理、实践方法、架构技巧、训练方法、技术前瞻等6个维度对深度卷积网络进行了系统、深入、详细地讲解。
以实战为导向,深入分析AlphaGo和GAN的实现过程、技术原理、训练方法和应用细节,为读者依次揭开神经网络、卷积网络和深度卷积网络的神秘面纱,让读者了解AI的“思考过程”,以及与人类思维的相同和不同之处。
本书在逻辑上分为3个部分:
第一部分 综述篇(第1、6、9章)
这3章不需要读者具备编程和数学基础,对深度学习和神经网络的基础知识、AlphaGo的架构设计和工作原理,以及深度学习和人工智能未来的技术发展趋势进行了宏观介绍。
第二部分 深度卷积网络篇(第2、3、4、5章)
结合作者的实际工作经验和案例代码,对深度卷积网络的技术理论、工作原理、实践方法、架构技巧和训练方法做了系统而深入的讲解。
第三部分 实战篇(第7、8章)
详细分析了AlphaGo和GAN的技术原理、训练方法和应用细节,包括详细的代码分析和大量GAN的精彩实例。
本书的案例代码在GitHub上提供下载,同时读者可在GitHub与作者交流本书相关的问题。
本书理论完备,涵盖主流经典强化学习算法和深度强化学习算法;实战性强,基于Python、Gym、TensorFlow 2、AlphaZero等构建,配套代码与综合案例。全书共12章,主要内容如下。
第1章:介绍强化学习的基础知识与强化学习环境库Gym的使用,并给出完整的编程实例。
第2~9章:介绍强化学习的理论知识。以Markov决策过程为基础模型,覆盖了所有主流强化学习理论和算法,包括资格迹等经典算法和深度确定性梯度策略等深度强化学习算法。所有章节都提供了与算法配套的Python程序,使读者完全掌握强化学习算法的原理与应用。
第10~12章:介绍了多个热门综合案例,包括电动游戏、棋盘游戏和自动驾驶。算法部分涵盖了在《自然》《科学》等权威期刊上发表的多个深度强化学习明星算法。
这是一本基于最新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。
本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。
本书共16章,分为三部分:
第一部分(第1~4章) PyTorch基础
首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,最后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。
第二部分(第5~8章) 深度学习基础
这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。
第三部分(第9~16章) 深度学习实践
这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
本书以机器学习基础知识做铺垫,深入剖析XGBoost的原理、分布式实现、模型优化、深度应用等。
第1~3章使读者对机器学习算法形成整体认知,了解如何优化模型以及评估预测结果,并熟悉常用机器学习算法的实现原理和应用,如线性回归、逻辑回归、决策树、神经网络、支持向量机等。
第4章借助实际案例,讲解如何通过XGBoost解决分类、回归、排序等问题,并介绍了XGBoost常用功能的使用方法。
第5~7章是本书的重点,从理论推导与源码层面深入剖析XGBoost,涵盖XGBoost原理与理论证明、分布式XGBoost的实现、XGBoost各组件的源码解析。
第8~9章为进阶内容,着重解析算法实践与工程应用中的难点,进而帮助读者更好地解决实际问题。
第10章介绍了一些较为前沿的将树模型与其他模型融合的研究方法,以开拓眼界,拓展思路。
内容简介
生成对抗网络毫无疑问是2018年最热门的人工智能技术之一,被美国《麻省理工科技评论》评选为2018年“全球十大突破性技术”。《生成对抗网络入门指南》是一本结合基础理论与工程实践的入门型书籍,深入浅出地讲解了生成对抗网络的各类模型以及技术发展。本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。通过本书的学习,能够了解生成对抗网络的技术原理,并通过书中的代码实例深入技术细节。本书共分10个章节,其中前半部分分别介绍了目前研究领域已经较为成熟的生成对抗网络模型,比如DCGAN、WGAN等等,以及大量不同结构的生成对抗网络变种。本书后半部分介绍了生成对抗网络在文本到图像的生成、图像到图像的生成以及其它应用中的研究与发展。希望本书能够帮助广大读者跟上人工智能技术的潮流,成为AI时代的先行者。
生成对抗网络(GAN)毫无疑问是当下热门的人工智能技术之一,被美国《麻省理工科技评论》评为2018年“全球十大突破性技术”。从2014年至今,与GAN有关的论文数量急速上升,网络上有人整理了近年来的GAN模型,截至2018年2月已经有超过350个不同形态的变种,并且数量仍然在持续增加中。除了科学研究本身的魅力以外,诸如文本到图像的生成、图像到图像的生成等应用研究也让业界非常兴奋,为人工智能领域带来了诸多可能性。
本书是一本结合基础理论与工程实践的入门书籍,深入浅出地讲解了GAN的技术发展以及各种衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能爱好者,书中包含GAN的理论知识与代码实践。通过本书的学习,读者能够理解GAN的技术原理与实现细节。
本书主要内容
•人工智能入门知识与开发工具
•GAN的理论与实践
•DCGAN、WGAN、cGAN等主流GAN衍生模型
•文本到图像的生成与图像到图像的生成
•多媒体与艺术设计领域中的GAN应用
•本书中实例代码和图片,可到华章官网www.hzbook.com搜索并下载
在现今的互联网公司中,产品线绵延复杂,安全防御体系无时无刻不在应对新的挑战。哪怕是拥有丰富工作经验的安全从业者,在面对层出不穷的攻击手段和海量日志数据时也会望洋兴叹。机器学习、深度学习是这些问题天然契合的解决方案,在数据量以指数级不断增长的未来,甚至有可能是唯一的出路。当AI遇到安全时,如何快速进化,本书给出了实战方案。 本书是《Web安全之机器学习入门》之后又一作品。本书首先介绍如何打造自己的深度学习工具箱,包括TensorFlow、TFLearn等深度学习库的安装以及使用方法。接着介绍卷积神经网络和循环神经网络这两大深度学习算法的基础知识。特别着重介绍在生产环境搭建深度学习平台需要使用的开源组件,包括Logstash、Kafka、Storm、Spark等。随后讲解了11个使用机器学习技术解决实际安全问题的案例,包括验证码识别、垃圾邮件识别、负面评论识别、骚扰短信识别、Linux后门检测、恶意操作行为检测、Webshell检测、智能扫描、DGA域名检测、恶意程序分类识别、反信用卡欺诈。本书针对每一个算法都给出了具体案例,理论结合实际,讲解清晰,文笔幽默,适合有信息安全基础知识的网络开发与运维技术人员参考,主要内容包括:
- 如何基于TensorFlow和TFLearn打造自己的深度学习工具箱。
- 如何基于Logstash、Kafka、Storm、Spark等打造深度学习的生产环境。
- 如何在MNIST数据集上实现验证码识别。
- 如何在安然数据集上实现垃圾邮件检测。
- 如何在IMDB数据集上实现负面评论识别。
- 如何在SMSSpamCollection数据集上实现骚扰短信识别。
- 如何在ADFA-LD数据集上实现Linux后门检测。
- 如何在SEA数据集上实现恶意操作行为检测。
- 如何在MIST数据集上实现恶意程序分类识别。
- 如何在Kaggle公开的数据集上实现信用卡欺诈检测。
- 如何在GitHub公开的数据集上实现Webshell检测,智能扫描和DGA域名检测。
这是一部从技术原理、算法和工程实践3个维度系统讲解图像识别的著作,由阿里巴巴达摩院算法专家、阿里巴巴技术发展专家、阿里巴巴数据架构师联合撰写。
在知识点的选择上,本书广度和深度兼顾,既能让完全没有基础的读者迅速入门,又能让有基础的读者深入掌握图像识别的核心技术;在写作方式上,本书避开了复杂的数学公式及其推导,从问题的前因后果 、创造者的思考过程,利用简单的数学计算来做模型分析和讲解,通俗易懂。更重要的是,本书不仅仅是聚焦于技术,而是将重点放在了如何用技术解决实际的业务问题。
全书一共13章:
第1-2章主要介绍了图像识别的应用场景、工具和工作环境的搭建;
第3-6章详细讲解了图像分类算法、机器学习、神经网络、误差反向传播等图像识别的基础技术及其原理;
第7章讲解了如何利用PyTorch来实现神经网络的图像分类,专注于实操,是从基础向高阶的过渡;
第8-12章深入讲解了图像识别的核心技术及其原理,包括卷积神经网络、目标检测、分割、产生式模型、神经网络可视化等主题;
第13章从工程实践的角度讲解了图像识别算法的部署模式。
购买本书的读者请在http://www.hzcourse.com/web/refbook/detail/8376/226
下载源代码
这是一本面向初学者的人脸识别工具书,不仅适合零基础的读者快速入门,还适合有一定基础的读者使其迅速达到可以进行工程实践的水平。
作者就职于某世界100强企业,在人脸识别方面积累了丰富的工程实践经验。本书不仅详细介绍了机器学习、深度学习、计算机视觉、人脸识别等方面的原理、技术和算法,而且还通过相关的实战案例讲解了如何进行人脸识别方面的实践,以及如何将做好的模型应用于工程实践中。同时,本书还提供了大量简洁、精炼的代码,能帮助读者从零开始实现一个工程级别的人脸识别引擎。
全书一共8章:
第1章介绍了人脸识别的基础知识和必备常识;
第2~4章详细讲解了与人脸识别相关的数学、机器学习、计算机视觉、OpenCV相关的基础和算法;
第5章讲解了深度学习的原理以及使用Keras实现深度学习模型的方法;
第6章介绍了常用的人脸识别算法;
第7~8章详细讲解了人脸识别引擎的实现方法以及如何将做好的模型进行工程化。
本书是一部面向初学者的搜索和推荐系统实战宝典。多位资深专家融合自己丰富的工程实践经验,一方面,精准地介绍了搜索和推荐系统的理论基础、工作原理和常见架构;一方面,深入地讲解了机器学习、深度学习、自然语言处理等AI技术在搜索和推荐系统中的应用场景、主要算法及其实现、工程实践案例。
全书一共12章,分为 四大部分。
第一部分(第 1 ~ 3 章) 搜索和推荐系统基础
首先介绍了概率统计与应用数学的基础知识,然后介绍了搜索和推荐系统的常识,最后介绍了知识图谱的基础理论。
第二部分(第 4 ~ 6 章) 搜索系统原理与架构
首先讲解了搜索系统的架构和原理,帮助读者了解搜索系统的组成、工作原理以及知识图谱在搜索系统中的应用;其次讲解了搜索系统中涉及的基本模型、机器学习以及深度学习算法;最后讲解了评价搜索系统的指标体系。
第三部分(第 7 ~ 9 章) 推荐系统原理与架构
首先讲解了推荐系统的架构和原理;其次讲解了推荐系统中涉及的线性模型、树模型以及深度学习模型;最后讲解了评价推荐系统的指标体系。
第四部分(第 10 ~ 12 章) 实战应用
首先介绍三种常见的搜索引擎工具,包括 Lucene、Solr和Elasticsearch;其次讲解了搜索系统和推荐系统的应用;最后介绍了如何充分结合AI与工程在工业界发挥作用。
本书由资深数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践。真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带你由浅入深系统掌握TensorFlow机器学习算法及其实现。
全书共11章,第1章介绍TensorFlow的基本概念;第2章介绍如何在计算图中连接算法组件,创建一个简单的分类器;第3章重点介绍如何使用TensorFlow实现各种线性回归算法;第4章介绍支持向量机(SVM)算法;第5章介绍如何使用数值度量、文本度量和归一化距离函数实现最近邻域算法;第6章讲述如何使用TensorFlow实现神经网络算法;第7章阐述TensorFlow实现的各种文本处理算法。第8章扩展神经网络算法;第9,解释在TensorFlow中如何实现递归神经网络(RNN)算法;第10章介绍TensorFlow产品级用例和tips;第11章展示TensorFlow如何实现k-means算法、遗传算法和解决常微分方程(ODE)等。
暂无详细内容介绍,四海清单 MKList.com
这是一部能指导初学者轻松进入聊天机器人领域并快速实现进阶的实战型著作。
4位作者都是资深的NLP技术专家,在聊天机器人领域有丰富的工程实践经验,曾在唯品会等公司有大规模的成功实践。这本书原理、技术、实战3个层面讲解了聊天机器人的数学与统计原理、NLP模型和技术、算法与实现、工程架构,以及案例实践。
全书共13章,可分为三大部分。
第一部分(第1章) 基础篇
简单介绍了数学和统计的基本理论,如概率统计和应用数学等。
第二部分(第2~9章) 技术篇
着重讲解了NLP的模型和技术,它们是构成对话系统的基础,一些模型可以用在自然语言理解模块(NLU)和自然语言生成模块(NLG),同时帮助读者整理对话系统的工程架构知识。
第三部分(第10~12章) 实例篇
通过对三个典型的对话系统案例的讲解,让读者完整了解架构、设计和实现对话系统的流程和方法。
这是一部从基础理论、核心原理、前沿算法等多个维度系统、全面讲解AutoML、AutoDL和元学习的著作。
作者是资深的人工智能专家,大型金融集团科技公司深度学习平台和AutoML平台负责人。本书得到了IEEE Fellow/ACM杰出科学家/香港科技大学教授杨强、腾讯AI Lab副 主任俞 栋、美国佛罗里达大学教授李晓林等8位来自企业界、学术界和媒体界的资深专家的一致好评。它既能让新手理清AutoML的脉络,快速上手机器学习,又能让有经验的从业者全面掌握AutoML知识体系,工作变得更高效。
全书共14章,逻辑上分为四部分:
第一部分(第1~2章) 人工智能基础
对人工智能、自动化人工智能的重要概念、发展历程及现状、适用场景、主要的工具和技术等做了全面的介绍,并引出了人工智能技术未来的发展方向——AutoML,这部分是阅读本书的基础。
第二部分(第3~6章) AutoML
主要讲解机器学习和自动化机器学习,核心是AutoML,包含自动化特征工程、自动化模型选择和自动化超参优化3个方面的内容。
第三部分(第7~13章) AutoDL
主要讲解深度学习和自动化深度学习,重点讲解了AutoDL的原理、基于强化学习的AutoDL、基于进化算法的AutoDL、AtuoDL的高阶知识、自动化模型压缩与加速,以及各种核心算法和前沿算法。
第四部分(第14章) 元学习
元学习是人工智能的理想目标,这部分对元学习的概念、流程和各种主流的学习方法都进行了详尽的介绍。
本书涵盖了各种类型的神经网络,包括循环神经网络、卷积神经网络、多层神经网络、感知神经网络等。你将不仅学习如何训练神经网络,还可以探索这些神经网络的泛化。之后,将深入研究不同的神经网络模型,并与现实世界的案例相结合。
全书共分为12章,全面系统地讲述了OpenCV3和Qt5的核心内容,包括:OpenCV和Qt介绍、创建OpenCV和Qt项目、Mat和QImage、图形视图框架、OpenCV中的图像处理、特征与描述符、多线程、视频分析、视频稳定性、调试与测试、链接与部署、Qt Quick应用程序等。为了便于学习与实践,本书提供了示例算法的编码实现。也向读者全面详尽地介绍了基于OpenCV和Qt进行图像处理、计算机视觉等编程的技术和方法。
本书共10章,可分为3个部分:第1~2章为部分,简介深度学习算法的发展历史和前沿技术简;第3~4章为第二部分,介绍深度学习主流框架;第5~10章为第三部分,主要为实践案例部分,结合应用场景使用深度学习技术解决相应问题,譬如语音识别器、聊天机器人、人脸识别器、对战机器人、推荐引擎构建等。
本书是利用实例来讲解深度学习框架以及深度学习方法的综合性著作,介绍了四大深度学习框架(TensorFlow、Caffe、Torch和MXNet),还详细介绍了调参、二次接口的编程、迁移学习的模型等内容。
本书不仅介绍大规模机器学习的基本概念,还包含丰富的案例研究。书中所选皆为最实用的技术和工具,而对理论细节不进行深入讨论,旨在提供大规模机器学习方法(甚至非常规方法)。不管是初学者、普通用户还是专家级用户,通过本书都能理解并掌握利用Python进行大规模机器学习。为让读者快速掌握核心技术,本书由浅入深讲解大量实例,图文并茂呈现每一步的操作结果,帮助读者更好地掌握大规模机器学习Python工具。例如:基于Scikit-learn可扩展学习、 Liblinear和Vowpal Wabbit快速支持向量机、基于Theano与H2O的大规模深度学习方法、TensorFlow深度学习技术与在线神经网络方法、大规模分类和回归树的可扩展解决方案、大规模无监督学习(PCA,聚类分析和主题建模等)扩展方法、Hadoop和Spark分布式环境、Spark机器学习实践以及Theano和GPU计算的基础知识。
自然语言处理(NLP)是应用程序开发的重要领域,在解决实际问题中起着越来越重要的作用。NLP任务支持的自然语言可访问应用程序需求显著增。本书将探索如何使用诸如全文本搜索、专有名称识别、聚类、标记、信息提取、汇总等方法自主组织文本。书中涵盖了NLP的概念,即使没有统计或自然语言处理背景的人也可以理解它。
这是一本能指导读者快速掌握TensorFlow和深度学习的著作,从TensorFlow的原理到应用,从深度学习到强化学习,提供了全栈解决方案。第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为TensorFlow领域的标准著作。第2版在第1版的基础上,去芜存菁,与时俱进,根据TensorFlow新版本全面升级,技术性、实战性、针对性、易读性均得到了进一步提升,必能帮助读者更轻松、更高效地进入深度学习的世界。
本书通过9个直观、有趣和生活息息相关的实际项目,详细介绍如何通过结合深度学习和强化学习构建智能而实用的人工智能系统,涉及的项目涵盖医疗健康、电子商务、专家系统、智能安防、移动应用和自动驾驶等领域,使用的技术包括卷积神经网络、深度强化学习、基于LSTM的RNN、受限玻尔兹曼机、生成对抗网络、机器翻译和迁移学习。借助本书的理论知识,你将有能力建立自己的智能模型,轻松解决任何类型的人工智能问题。
全书共10章,第1章介绍构建人工智能系统的基础知识;第2章介绍如何使用迁移学习来检测人眼中的糖尿病视网膜病变症状,并判断其严重程度;第3章介绍循环神经网络(RNN)架构的基础知识;第4章解释如何创建一个智能的AI模型;第5章讨论CNN和长短期记忆(LSTM)在视频字幕中的角色,以及视频字幕系统的构建;第6章讨论推荐系统;第7章解释机器学习如何向移动应用提供服务;第8章解释聊天机器人是如何进化的,以及使用聊天机器人的好处;第9章解释强化学习和Q学习;第10章讨论什么是CAPTCHA以及为什么我们需要CAPTCHA,并介绍如何使用对抗学习来生成CAPTCHA。
适读人群:
本书面向机器学习从业人员、在校相关专业学生以及具备一定基础的人工智能领域爱好者。
1、本书第2版跟踪近两年生成对抗网络(GAN)技术的发展和变化,包括离散数据生成、GAN与强化学习的关联、海量级高质量图像生成技术等内容,新增了BigGAN、StyleGAN等图像生成模型的介绍与技术解析。这些内容更新与第1版内容有机地结合,深入浅出地阐述了生成对抗网络技术原理和演进,通过代码实例揭示了生成对抗网络技术实际应用的方法,方便读者学习入门。
2、书中所有示例代码基于Tensorflow2.0进行了更新,全部支持在Tensorflow2.0环境下运行,方便读者上手实践,深入了解技术实现细节。
3、读者可在华章图书网站该书网页下载书中全部示例代码。
从2014年至今,与GAN有关的论文数量急剧增加,从谷歌学术的数据来看,数量仍在不断增加中。究其原因,除了科学研究本身的魅力之外,诸如文本到图像的生成、图像到图像的生成等应用研究也让业界非常兴奋,给人工智能领域带来诸多可能性。
本书是GAN的入门书籍,结合基础理论、工程实践进行讲解,深入浅出地介绍GAN的技术发展以及各类衍生模型。本书面向机器学习从业人员、高校相关专业学生以及具备一定基础的人工智能技术爱好者。书中包含GAN的理论知识与代码实践(示例代码可以从华章官网搜索下载),可帮助读者理解GAN的技术原理与实现细节。
人工智能入门知识与开发工具
GAN的理论与实践
DCGAN、WGAN、cGAN等主流GAN衍生模型
文本到图像、图像到图像以及离散数据的生成方法
GAN与强化学习的关联
BigGAN、StyleGAN等前沿GAN模型
多媒体与艺术设计领域中的GAN应用
计算机视觉解决方案日益普及,在医疗、汽车、社交媒体和机器人等领域取得了不错的进展。 《计算机视觉实战:基于TensorFlow 2》将帮助你了解全新版本的谷歌机器学习开源框架TensorFlow 2,你将掌握如何使用卷积神经网络(CNN)完成视觉任务。 《计算机视觉实战:基于TensorFlow 2》从计算机视觉和深度学习基础知识开始,教你如何从头开始构建神经网络。你将掌握一些让TensorFlow成为广泛使用的Al库的特性,以及直观的Keras接口,继而高效地构建、训练和部署CNN。通过具体的代码示例,《计算机视觉实战:基于TensorFlow 2》展示了如何使用Inception和ResNet等现代神经网络分类图像,以及如何使用YOLO、MaskR-CNN和U-Net提取特定内容。《计算机视觉实战:基于TensorFlow 2》还将介绍如何构建生成式对抗网络(GAN)和变分自编码器(VAE)来生成和编辑图像,以及如何使用LSTM分析视频。在此过程中,你将深入了解迁移学习、数据增强、域适应,以及移动设备和Web部署等高级知识以及其他关键概念。 通过阅读《计算机视觉实战:基于TensorFlow 2》,你将获得使用TensorFlow 2解决高级计算机视觉问题的理论知识和实际技能。 通过阅读《计算机视觉实战:基于TensorFlow 2》,你将学到: 如何从头开始创建神经网络。 如何使用包括Inception和ResNet在内的现代神经网络架构进行图像分类。 如何使用YOLO、MaskR-CNN和U-Net检测、分割图像中的目标。 如何解决自动驾驶汽车开发和面部表情识别系统中的问题。 如何使用迁移学习、GAN和域适应提升应用的性能。 如何使用循环神经网络进行视频分析。 如何在移动设备和浏览器上优化和部署神经网络。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
深度卷积网络(DCNN)是目前十分流行的深度神经网络架构,它的构造清晰直观,效果引人入胜,在图像、视频、语音、语言领域都有广泛应用。
本书以AI领域新的技术研究和和实践为基础,从技术理论、工作原理、实践方法、架构技巧、训练方法、技术前瞻等6个维度对深度卷积网络进行了系统、深入、详细地讲解。
以实战为导向,深入分析AlphaGo和GAN的实现过程、技术原理、训练方法和应用细节,为读者依次揭开神经网络、卷积网络和深度卷积网络的神秘面纱,让读者了解AI的“思考过程”,以及与人类思维的相同和不同之处。
本书在逻辑上分为3个部分:
第一部分 综述篇(第1、6、9章)
这3章不需要读者具备编程和数学基础,对深度学习和神经网络的基础知识、AlphaGo的架构设计和工作原理,以及深度学习和人工智能未来的技术发展趋势进行了宏观介绍。
第二部分 深度卷积网络篇(第2、3、4、5章)
结合作者的实际工作经验和案例代码,对深度卷积网络的技术理论、工作原理、实践方法、架构技巧和训练方法做了系统而深入的讲解。
第三部分 实战篇(第7、8章)
详细分析了AlphaGo和GAN的技术原理、训练方法和应用细节,包括详细的代码分析和大量GAN的精彩实例。
本书的案例代码在GitHub上提供下载,同时读者可在GitHub与作者交流本书相关的问题。